If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+4n-14=0
a = 7; b = 4; c = -14;
Δ = b2-4ac
Δ = 42-4·7·(-14)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{102}}{2*7}=\frac{-4-2\sqrt{102}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{102}}{2*7}=\frac{-4+2\sqrt{102}}{14} $
| 4.8/b=7.2/7.6 | | 2x+15=7x-30 | | 2)-6(n+9)=4(5n–7) | | 9x-1=14x-36 | | 4(-5x-1)=2 | | f²-(4f-2f²)=2f²+4f-8 | | 9.1/20=a/40 | | 1.7=xx0.3 | | 4(3x-7)=-12 | | -6(n+9)=4(5n–7) | | 12x+20=9x+35 | | 10x-6=2x+42 | | -2x(-2)=4 | | c-43=0 | | 1/2(4x+8=) | | 5x+3=x+19 | | 4x+16=9x-32 | | 3x-(2x+4)=+5 | | 11x15-2x=3(2x+10) | | –5u–16=9 | | 23+3(2x-3)-3=-7(x+1)+4 | | 3x−6=5x−4 | | –17b−–18b=–12 | | p-5=-31 | | 3x−6=5x−4. | | 1=f12 | | 1/3x=51/4-1/x | | -1=y-5 | | Y=3l-2l | | 1.3(z+4)−–1.2=7.7 | | 6x–8x=-15x–26 | | 1/2(x-48)=15+7x |